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Coupling Between Narrow Transverse Inductive Strips
 in Waveguide

KAI CHANG, STUDENT MEMBER, IEEE, AND PETER J. KHAN, MEMBER, IEEE

Abstract—A general expression is found for the susceptance of
two narrow transverse strips of differing width, unsymmetrically
located in a ‘rectangular waveguide. This analysis is based on ex~
tremization of the current-density ratio between the two strips,
through use of the variational prineiple. The resulting susceptance
values have been experimentally verified, and the theory is valid for
interstrip spacings ranging down to the point where the two strips
touch, or even overlap.

A

I. INTRODUCTION

HIS paper sets out an analysis of the coupling be-

tween two narrow, transverse, inductive strips which
are of different widths and are unsymmetrically located in
a rectangular waveguide. The theoretical approach set out
here is readily generalized to other geometries, including
transverse nontouching strips and axial strips; it can also
be extended to include more than two strips. Although the
analysis is restricted to narrow strips, this restriction does
not significantly limit the practical applicability of the
results in circuit design.

The analysis reported here has direct application in the
design of compact waveguide filters, in the determination
of broad-band tuning circuits for strip-mounted diodes,
and in the study of multidiode circuits.

II. REVIEW OF THE LITERATURE

Coupling between two antennas in an unbounded
medium has been studied extensively, using two principal
methods: numerical solution of the antenna integral
equation to obtain the antenna current distribution [17]-

[3], or derivation of a variational form for the antenna’

current [471-{6].

Studies of coupling between waveguide obstacles in the
same transverse plane have been confined mainly to the
special case of symmetrically placed obstacles. Gruenberg
[7] considered two symmetrically placed posts, such that
the currents in both posts are equal in both magnitude and
phase; his analysis specifically excludes the geometry for
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which the symmetric posts are close together. Craven and
Lewin [8] analyzed a structure having three small-
diameter vertical posts evenly spaced across the wave-
guide transverse plane; the resulting symmetry is such
that the seventh mode TEy is the first one to be excited,
and the current in the center post may be taken to be V2
times the current in each of the two outer posts. Mariani
[97] modified their results to represent each post by a T
network (instead of a shunt element), with the series
reactances taken to be those determined by Marcuvitz
[10] for the single post, modified by an experimentally
determined coupling factor.

The reactance of a general unsymmetrical multiple-
strip geometry may be found by use of a singular-integral
equation over a multiple interval, as shown by Lewin
[11], [12] in extending the singular-integral approach
which had previously been applied to symmstric double
inductive apertures [13].

A recent paper by El-Sayed [14] considers a symmetri-
cal two-post mounting structure for varactor-funed Gunn
oscillators and provides an equivalent circuit which ac-
commodates coupling between the posts.

The analysis presented in this paper draws upon varia-
tional theory to develop an approach to two unsymmetrie
strips in waveguide which has the advantages of providing
a value for the current-density ratio and also offering
considerable physical insight into the coupling between
closely spaced obstacles.

III. THEORETICAL ANALYSIS

The structure being analyzed here is shown in Fig. 1.
Two infinitesimally thin, inductive, perfectly conducting
strips of unequal widths w; and w; are placed unsym-
metrically in a rectangular waveguide, at the plane z = 0.
The incident dominant-mode electric field is given by
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Cross section of a rectangular waveguide with two in-

Fig. 1. o
1

finitesimally thin strips in the same transverse plane. C; =
(w,/2) CE =a — [d2 + (u’2/2)]
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For a single inductive strip in waveguide, Collin [15]
shows that the normalized shunt susceptance B may be
expressed in the following variational form:

-2 [/ Ju(2,y) sm( )dx dy]2
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where
. ner? 1/2
T, = (——2— — ]Co2>
a
"N = —jrl

and Jy(x,y) is the y-du‘ected current density in the strip of
surface S.

Applying this formula to each of the strips S;'and S; in
turn, we obtain expressions for B; and B,, which each

represent the susceptance of one strip, if the other strip -

were absent (i.e., if.interactive couphng effects could be
neglected).
Assuming a constant current on each narrow strip, we

readily obtain
[ (WZ2a> <1rx1a>:r
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with a similar expression for B,.

The derivation for (2) indicates that it can also be
interpreted validly as giving the susceptance Br of the
total obstacle shown in Fig. 1, with S taken to be the
surfaces Sy and Sy, and J,(z,y) the current density over the
two strips.

To evaluate Br we use the following approximate form
for the current density J,(z,y), suitable for use when the
strips are narrow

Jo(zy) = Alu(e — 210) — u(2 — 2) ]
+ fALu(e — zu) —ul(e —z)] (4)

where A is an amplitude constant and u(x). is the step
“function defined by

1 if 220
u(z) =

0 if z<oO. (5)

Thus the current density is assumed constant on each
narrow strip, but the current-density values on the two
strips differ by the factor f, to be determined. This form is
consequently an application to the two-port case of the
constant-current-density form used by Collin [15].
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Substituting (4) into (2) and integrating over S =
Si + 82, we obtain

_ 2 Ei. E1p)?
BT=—<—> (Ere + fEw) 6)
Y1 © 1
T\
n2=2 <n21.‘n) (Ena + f-Enb)
where
E.. = cos (nwx2a> — cos (n‘mla), no= 1200500
a a
E, = cos (mrm) — cos (@1}1), = 1,2,0+,00.
a a

Note that £, and E.» are geometric factors readﬂy found
when the structure is specified.

To evaluate Br, the value of the current-density ratio f
must be determined by use of the variational principle.
This f value is selected to be that which extremizes (6).
Putting (dBr/df) = 0 gives an equation for f in the form

2 Ena2 i EnaEnb
E — Ei,
f= ()
E i Enb2 E i EnaEnb
la = n21‘n 1% = 2I‘n

from which f is readily obtained, since the infinite series
are rapidly convergent because of the (1/22T,) term.

A current ratio F may be defined as the ratio of the total
currents in the two strips. Then

_ e

W

Fig. 2 shows the ratios F and f, as a function of the
width and position of the second strip, with the dimen-
sions of the first strip held constant. It is evident from
Fig. 2(a) that, when the two strips are symmetrically
positioned, the wider strip has a lower current density but
a greater current than the narrow strip. Fig. 2(b) confirms
the expectation that, when the two strips are of equal
width, the one closer to the waveguide center has a
greater current density and total current. Note that f = F
in Fig. 2(b) since w,; = w; in this case.

From (6), equivalent circuits may be obtained in the
form shown in Fig. 3. Here

By = Br — (B1 + Bs) (8)
and
= (=B)™ X, = (—By.
However,
X # (—Bu)™

and must generally be determined from (6).
Equation (6) is applicable to narrow strips of unequal
width placed unsymmetrically in a transverse waveguide
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Fig. 2. Current ratio F and current density ratio f. () As a func-
tion of strip width w, for dimensions ¢, = 0.300 in, ¢z = 0.600 in,
wy = 0.050 in. (b) As a function of strip position ¢; for dimensions
a = 0.300in, wy = w; = 0.050in. For both ealculations ¢ = 0.900
in, b = 0.400 in. The solid line is for frequency = 8.00 GHz, and

. the broken line for 12.00 GHaz.
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Fig. 8. Various forms of equivalent circuit for the two-strip ob-

stacle.

plane. It is instructive to compare this formulation with
that derived by El-Sayed [14] for posts of equal diameter
symmetrically positioned in a transverse waveguide plane.
Using Fig. 3(c¢) for comparison with Fig. 2(b) of [14], it is
readily seen from (7) that

2
XM=_ 2,1, <§’m> ' ©)
when
Wy = Wy
a=a—¢
and

Ela = Elb~

Substituting for E., and Ei,, this X, expression is
found to be identical with the negative of the second term
[14, eq. (12b)] when that term is divided by the factor
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Ey? [14, following eq. (14¢)]. El-Sayed identifies that
term with the impedance Zu in [14, fig. 2(b)]. Thus the
reactance expressed obtained here reduces to that of
El-Sayed (when the gaps in his posts are short-circuited)
for the special case of a symmetrical geometry.

IV. COMPARISON WITH EXPERIMENTAL
- MEASUREMENTS

Measurements were carried out with strips in con-
ventional X-band waveguide having ¢ = 0.900 in and b =
0.400 in. Results are shown in Fig. 4 as a function of
frequency and distance. In Fig. 4(a) D = 0.436 in, while
for Fig. 4(b), the strips are closely coupled, with D =
0.101 in. In both cases the results agree very closely with
the theoretical calculation of Br. It is interesting to note
that Br/)\, is almost independent of frequency, as was
found by Lewin for the multiaperture obstacle [117, [127].'
By is also shown here, and is seen to decrease slightly with
increasing frequency.

Further measurements carried out to determine the -
susceptance Br as a function of the distance di, for sym-
metrically placed strips, are shown in Fig. 4(¢). Orce
again, the agreement between theory and measurement is
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Fig. 4. Susceptance of the two-strip obstacle. The solid line shows
the susceptance value Bry; the broken line shows the sum B, + B
(a) dv = 0.098 in, dy = 0.152 in, wy = 0.106 in, w, = 0.108 in.
(b) d1 = dz = 0320111, w = 0077111, We = 00821[1‘ (C) d = d] =
ds, with wy = 0.077 in, w, = 0.082 in, and frequency = 10.0 GHz.
For all cases ¢ = 0.900 in, b = 0.400 in.
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close. As expected, the mutual susceptance magmtude
increases when the strips are moved closer; however, for
close spacing, a capacitive susceptance component de-
creases the overall magnitude.

Other measurements carried out for a variety of strip
dimensions and positions also gave very close agreement
with the theory, for narrow strips having w/a < 0.15.
This restriction on strip width has not been a significant
limitation upon the practical application of the two-strip
obs’oacle in microwave circuit design.

V. COUPLING. OF STRIPS IN WAVEGUIDE

Using this theory, the coupling between transverse
narrow strips in waveguide can now be studied for any
general value of interstrip spacing.

Although the theory is applicable to unsymmetric
strips, the coupling is most readily assessed by considering
two symmetrically placed transverse strips of equal width
w which are moved from the waveguide sidewalls toward
each other. Fig. 5 shows the calculated value of the total
susceptance By as a function d (which is equal to d; and
ds in Fig. 1). At the point 7', the two strips touch to form .
one strip of widioh 2w; at point S, the two strips overlap
exactly, giving one strip of width w. Theoretical values of
susceptance of a single strip of width between w and 2w,
_calculated using the single-strip theory [15], are also
shown on the figure, for the appropriate values of d which
yield such an obstacle. In addition the curve for the sum
B: 4+ B, (which now equals 2B, for the symmetric struc-
ture) of the 1nd1v1dual strip susceptances is shown for d
values extendmg to point T, where the two strips touch.
Experimental values are not shown in this figure since
they have been shown for a similar geometry in Fig. 4(c).

It is clear from this figure that the theory developed in
this paper remains applicable under tight coupling, even
to the point where the strips touch and overlap. The
coupling is generally inductive, but a large capacitive
component arises for small interstrip spacing.
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Fig. 5. Susceptance of the two-strip obstacle, as a function of the
distance d = di = ds, compared with the single-strip susceptance
when the two strips touch or overlap. The solid line shows the
susceptance value; the broken line shows the sum B; 4+ B,. The
curves apply to wy = wy = 0.050 in, ¢ = 0.900 in, b = 0.400 in,
and frequency = 8.25 GHz.
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An assessment of the coupling between the waveguide
strips is facilitated by a graph of By, for the symmetric
strip structure, as a function of strip separation distance
D, shown in|Fig. 6. It is evident that the susceptance
becomes capacitive at close spacing, and that there is a
maximum value of inductive susceptance coupling as D
increases. It is interesting to compare this curve with that

* for mutual coupling between parallel dipole antennas in an

unbounded medium [17.
The effect |of change in the width and position of one
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Fig. 6. Mutual susceptance By as a function of the interstrip
separation D.
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Fig. 7. Susceptance of the two-strip obstacle. (a) As a function of
strip width w; for dimensions ¢; = 0.300 in, ¢; = 0.600 in, w; =
0.050 in. (b)| As a funection of strip position c¢; for dimensions ¢; =
0.300 in, w;| = we = 0.050 in. The solid line is for frequency =
8.00 GHz, and the broken line for 12.00 GHz. In both cases ¢ =
0.900 in, b = 0.400 in.
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strip on the total susceptance is shown in Fig. 7. The in-
crease in susceptance is almost linear with width in Fig.
7(a), while Fig. 7(b) shows that maximum inductive
susceptance occurs with the second strip displaced slightly
from the symmetric position.

VI. CONCLUSIONS

An expression for the susceptance of two narrow frans-

verse coupled strips has been derived using the variational -

technique and has been experimentally verified for a wide
range of strip spacings, provided that w/e < 0.15.

The analysis presented here has application in filter
design and in impedance transforming networks, in
addition to the insight it provides into the coupling of
proximate obstacles in waveguide.
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