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Coupling Between Narrow Transverse

in Waveguide

1!)76 101,

Inductive strips

KAI CHANG, STUDENT MEMBER, IEEE,

Absfracf—A general expression is found for the susceptance of

two narrow transverse strips of differing width, unsymmetrically

‘ located in a rectangular waveguide. Thki analysis is based on ex-

tremization of the current-density ratio between the two strips,

through use of the variational principle. The resulting susceptance

values have been experimentally verified, and the theory is valid for

interstrip spacings ranging dow”n to the point where the two strips

touch, or even overlap.

I. INTRODUCTION

THIS paper sets out an analysis of the coupling be-

tween two narrow, transverse, inductive strips which

are of different widths and are unsymmetrically located in

a rectangular waveguide. The theoretical approach set out

here is readily generalized to other geometries, including

transverse nontouching strips and axial strips; it can also

be extended to include more than two strips. Although the

analysis is restricted to narrow strips, this restriction does

not significantly limit the practical applicability of the

results in circuit design.

The analysis reported here has direct application in the

design of compact waveguide filters, in the determination

of broad-band tuning circuits for strip-mounted diodes,

and in the study of multi diode circuits.

II. REVIEW OF THE LITERATURE

Coupling between two antennas in an unbounded

medium has been studied extensively, using two principal

methods: numerical solution of the antenna integral

equation to obtain the antenna current distribution [l]–

[3], or derivation of a variational form for the antenna

current [4]–[6].

Studies of coupling between waveguide obstacles in the

same transverse plane have been confined mainly to the

special case of symmetrically placed obstacles. Gruenberg

[7] considered two symmetrically placed posts, such that

the currents in both posts are equal in both magnitude and

phase; his analysis specifically excludes the geometry for
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which the symmetric posts are close together. Craven and

Lewin [8] analyzed a structure having three small-

diameter vertical posts evenly spaced across the wave-

guide transverse plane; the resulting symmetry is such

that the seventh mode TETO is the first one to be excited,

and the current in the center post may be taken to be W

times the current in each of the two outer posts. Mariani

[9] modified their results to represent each post by a T

network (instead of a shunt element), with the series

reactance taken to be those determined by Marcuvitz

[10] for the single post, modified by an, experimentally

determined coupling factor.

The reactance of a general unsymmetrical multiple-

strip geometry may be found by use of a singular-integral

equation over a multiple interval, as shown by Lewin

[11], [12] in extending the singular-integral approach

which had previously been applied to symml~tric double

inductive apertures [13].

A recent paper by E1-Sayed [14] considers :3symmetri-

cal two-post mounting structure for varactor-tuned Gunn

oscillators and provides an equivalent circuit which’ ac-

commodates coupling between the posts.

The analysis presented in this paper draws upon varia-

tional theory to “develop an approach to two unsymmetric

strips in waveguide which has the advantages (of providing

a value for the current-density ratio and also offering

considerable physical insight into the coupling between

closely spaced obstacles.

III. THEORETICAL ANALYSIS

The structure being analyzed here is shown in Fig. 1.

Two infinitesimally thin, inductive, perfectly conducting

strips of unequal widths WI and WZ are placed unsym-

metrically in a rectangular waveguide, at the plane z = O.

The incident dominant-mode electric field is given by
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Fig. 1, Cross section of a rectangular waveguide with two in-
finitesimally thin strips in the same transverse plane. c, = d, +
(w,/2). C, = a – [d, + (W/2)1.
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(),? L=sin ~ exp(– I’lz)i. (1)

For a single inductive strip in waveguide, Collin [15]

shows that the normalized shunt susceptance ~ may be

expressed in the following variational form:

–2
[/ s ‘.(x’)sinE9dxd’l

B= (2)

715+
[/?L=2 n s ‘~(x”)sinwd’d”!

where

‘n’r:-k’”v
‘)’1 = —jrl

and JV (x,y) is the y-directed current density in the strip of

surface S.

Applying this formula to each of the strips S1’and Ss in

turn, we obtain expressions for El and l%, which each

represent the susceptance of one strip, if the other strip

were absent (i.e., if ~interactive coupling effects could be

neglected).

Assuming a constant current on each narrow strip, we

readily obtain

-2[c0se)-cOs(?J
BI = (3)

‘1
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with a similar expression for l%.

The derivation for (2) indicates that it can also be

interpreted validly as giving the susceptance ET of the

total obstacle shown in Fig. 1, with S taken to be the

surfaces & and S~, and JU (x,y) the current density over the

two strips.

To evaluate ET we use the following approximate form

for the current density JU(Z,y), suitable for use when the

strips are narrow

+ fll[u(x – xl,) – U.(Z – %,)] (4)

where A is an amplitude constant and u(z) is the step

function defined by

{

1 if x20

u(x) =
o if x<O. (5)

Thus the current density is assumed constant on each

narrow strip, but the current-density values on the two

strips differ by the factor j, to be determined. This form is

consequently an application to the two-port case of the

constant-current-densit y form used by Collin [15].

Substituting (4) into (2) and integrating over s =

& + SZ, we obtain

()ET=– 2 (-% + J%) 2
(6)

71 m

~, (n+. )
(E.a + flln,)’

where

‘nQ=cOs(%-cOs(%‘= 12)””o)m

‘n’=cosr?)-cos(y)‘=12”””)m
Note that Ena and Enb are geometric factors readily found

when the structure is specified.

To evaluate B~, the value of the current-density ratio f

must be determined by use of the variational principle.

This $ value is selected to be that which extremizes (6).

putting (d~2./df) = O gives an equation for ~ in the form

from which f is readily obtained, since the infinite series

are rapidly convergent because of the ( l/n2’n) term.

A current ratio F may be defined as the ratio of the total

currents in the two strips. Then

Fig. 2 shows the ratios “F and j, as a function of the

Ridth and position of the second strip, with the dimen-

sions of the first strip held constant. It is evident from

Fig. 2(a) that, when the two strips are symmetrically

positioned, the wider strip has a lower current density but

a greater current than the narrow strip. Fig. 2(b) confirms

the expectation that, when the two strips are of equal

width, the one closer to the waveguide center has a

greater current density and total current, Note that f = F

in Fig. 2(b) since WI = WZin this case.

From (6), equivalent circuits may be obtained in the

form shown in Fig. 3, Here

‘BM = BT – (B, + B2) (8)

and

xl = (–BI)-’ X2 = (–-l%)-l.

However,

X-M# (–B’!!?)-’

and must generally be determined from (6).

Equation (6) is applicable to narrow strips of unequal

width placed unsymmetrically in a transverse waveguide
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Fig. 2. Current ratio Fandcurrent density ratio$. (a) Asafunc-
tionof strip width w, fordimensionsc, = 0.300 in, cz = 0.600 in,
WI = 0.050m. (b) -h a function of strip position cz for dimensions
CI = 0.300 in, w = wz = 0.050 in. For botb calculationsa = 0.900
in, b = 0.400 in. Thesolid line is for frequency = 8.00 GHz, and
the broken line for 12.00 GHz.
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Fig. “3. Various forms of equivde~t circuit for the two-strip ob-

plane. It is instructive to compare this formulation with

that derived by E1-Sayed [14] for posts of equal diameter

symmetrically positioned in a transverse waveguide plane.

Using Fig. 3 (c) for comparison with Fig. 2(b) of [14], it is

readily seen from (7) that

(9)

when

cl=a —c2

and

Ela = Elb.

Substituting for Ena and El=, this -$?M expression is

found to be identical with the negative of the second term

[14, eq. (12b) ] when that term is divided by the factor

k,? [14, following eq. ( 14c) ]. E1-Sayed identifies that

term with the impedance Zbl in [14, fig. 2(b)]. Thus the

reactance expressed obtained here reduces to that of

E1-Sayed (when the gaps in his posts are short-circuited)

for the special case of a symmetrical geometry.

IV. COMPARISON WITH EXPERIMENTAL

MEASUREMENTS

Measurements were carried out with strips in con-

ventional X-band waveguide having a = 0.911)0in and b =

0.400 in. Results are shown in Fig. 4 as a function of

frequency and distance. In Fig. 4(a) D = 0.436 in, while

for Fig. 4(b), the strips are closely coupled, with D =

0.101 in. In both cases the results agree very closely with

the theoretical calculation of ET. It is interesting to note

that BT/& is almost independent of frequency, as was

found by Lewin for the multiaperture obstacle [11], [12].

EM is also shown here, and is seen to decrease slightly with

increasing frequency.

Further measurements carried out to determine the

susceptance ~T as a function of the distance dl, for sym-

metrically placed strips, are shown in Fig.. 4(c). Once

again, the agreement between theory and measurement is
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Fig. 4. Susceptance of the two-strip obstacle. The Isolid line sho~s
the susceptance value B~; the broken line shows the sum B1 i- IL.
(a) d, = 0.098 in, dj = 0.152 in, w, = 0.106 in, w, = 0.108 in.
(b) d, = d, = 0.320 in, WI = 0.077 in, wz = 0.082 in. (c)d = d, =
dz, with WI = 0.077 in, wz = 0.082 in, and frequency = 10.0 GHz.
For all cases a = 0.900 in, b = 0.400 in.
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close. As expected, the mutual susceptance magnitude

increases when the strips are moved closer; however, for

close spacing, a capacitive susceptance component de-

creases the overall magnitude.

Other measurements carried out for a variety of strip

dimensions and positions also gave very close agreement

with the theory, for narrow strips having w/a <0.15.

This restriction on strip width has not been a significant

limitation upon the practical application of the two-strip

obstacle in microwave circuit design.

V. COUPLING-OF STRIPS IN WAVE GUIDE

Using this theory, the coupling between transverse

narrow strips in waveguide can now be studied for any

general value of interstrip spacing.

Although the theory is applicable to unsymmetric

strips, the coupling is most readily assessed by considering

two symmetrically placed transverse strips of equal width

w which are moved from the waveguide sidewalls toward

each other. Fig. 5 shows the calculated value of the total

susceptance ET as a function d (which is equal to dl and

dz in Fig. 1). At the point T, the two strips touch to form

one strip of width 2W; at point S, the two strips overlap

exactly, giving one strip of width W. Theoretical values of

susceptance of a single strip of width between w and 2w,

calculated using the single-strip theory [15], are also

shown on the figure, for the appropriate values of d which

yield such an obstacle. In addition the curve for the sum

BI + BZ (which now equals 2BI for the symmetric struc-

ture) of the individual strip susceptances is shown for d

values extending to point T, where the two strips touch.

Experimental values are not shown in this figure since

they have been shown for a similar geometry in Fig. 4(c).

R is clear from this figure that the theory developed in

this paper remains applicable under tight, coupling, even

to the point where the strips touch and overlap. The

coupling is generally inductive, but a large capacitive

component arises for small interstrip spacing.

STRIP POSITION d - Inches

Fig. 5. Susceptance of the two-strip obstacle, as a function of the
distance d = dl = d,, compared with the single-strip susceptance
when the two strips touch or overlap. The solid line shows the
susceptance value; the broken line shows the sum BI + Bz. The
curves apply to UA = W1 = 0.050 in, a = 0.900 in, b = 0.400 in,
and frequency = 8.25 GHz.
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nt of the coupling between the waveguide

ated by a graph of BM, for the symmetric

, as a function of strip separation distance

?ig. 6. It is evident that the susceptance

itive at close spacing, and that there is a

le of inductive susceptance coupling as D

interesting to compare this curve with that

pling between parallel dipole antennas in an

dium [1].
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,ance of the two-strip obstacle. (a) As a function of
, for dimensions c1 = 0.300 in, cz = 0.600 in, WI =
,s a function of strip position C2for dimensions CI =
= wz = 0.050 in. The solid line is for frequency =
1 the broken line for 12.00 GHz. In both cases a =
2.400 in.
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strip on the total susceptance is shown in Fig. 7. The in-

crease in susceptance is almost linear with width in Fig.

7(a), while Fig. 7(b) shows that maximum inductive

susceptance occurs with the second strip displaced slightly

from the symmetric position.

VI. CONCLUSIONS

An expression for the susceptance of two narrow trans-

verse coupled strips has been derived using the variational

technique and has been experimentally verified for a wide

range of strip spacings, provided that w/a 50.15.

The analysis presented here has application in filter

design and in impedance transforming networks, in

addition to the insight it provides into the coupling of

proximate obstacles in waveguide.
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